Keysight PZ2100 Series High-Channel Density Precision Source / Measure Unit Solution

PZ2100A Precision SMU Mainframe PZ2110A High-Resolution SMU PZ2120/21A High-Speed SMU PZ2130/31A High-Channel Density SMU

Table of Contents

Introduction	3
Save Cost and Valuable Rack Space	4
Wide Application Coverage from DC To Dynamic Measurements	7
Single-Box Solution Offers Easy Integration and Time Efficiency	. 12
Comparison Table by Model	. 15
Specification	. 16
Furnished Accessories	. 38
Ordering Information	. 38

Introduction

The Keysight PZ2100 Series is the leading automated test equipment (ATE) solution that integrates enormous source/measure unit (SMU) resources into valuable rack space with flexible module options. The PZ2100 provides flexible scalability with multiple SMU module options covering a wide range of applications, from conventional static DC measurements down to 10 fA to emerging dynamic/pulsed measurements up to 15 MSa/s and down to 10 µs width. The PZ2100 provides an uncompromising high-density integration that fully uses available rack space, slots, or SMU module capabilities. The PZ2100 enables a lower cost per channel and 20x smaller rack space than conventional SMUs, significantly reducing your test costs and saving valuable rack space.

Key benefits	Key features
Save cost and valuable rack space	 5 SMU module options flexibly configurable and upgradable in 1U, 4 slot mainframe at lower cost/ch Scalable up to 20 ch, 20x higher density than conventional SMU SMU integrating pulser/digitizer eliminates the need for additional instruments
Wide application coverage from DC to dynamic measurements	 Wide output range of up to 210 V / 3.5 A DC / 10.5 A pulse Low current measurement supported by min. 10 fA high resolution Dynamic/pulsed measurement with 15 MSa/s sampling rate and 10 µs narrow pulse Wide dynamic range with auto ranging and seamless ranging
Simple integration and time efficiency	 Single box solution simplifies synchronization with multiple SMUs at < 50 ns accuracy User-friendly GUI accelerates the test prototyping, debugging, and troubleshooting SCPI programming via LAN / USB / GPIB for easy adoption to various environments
	 PathWave IV Curve software enables quick measurements without programming

Save Cost and Valuable Rack Space

Keysight PZ2100A Precision SMU Mainframe

The Keysight PZ2100A is the precision source/measure unit (SMU) mainframe that uncompromisingly and densely integrates 20 SMU channels at maximum into valuable 1U height, full width, rack space with flexible module options at their best performance. It supports a variety of resources such as the Keysight PZ2110A High-Resolution SMU, PZ2120/21A High-Speed SMUs, and PZ2130/31A High-Channel Density SMUs with multiple functions such as pulser and digitizer, as well as precise voltage/current sourcing and measuring to adapt to a wide range of application requirements.

Туре	Model	Description & key features
Mainframe		 Precision SMU Mainframe, 4 slots, 1U Scalable up to 20 channels 5 SMU module options flexibly configurable and upgradable Simplified synchronization at <50 ns accuracy User-friendly GUI collectively managing up to 20 channels
High-resolution SMU	PZ2110A	 Precision SMU, 1.25 MSa/s, 10 fA, 210 V, 315 mA DC/pulse 10 fA resolution with 30 fArms measurement noise (1 PLC) Narrow pulse down to 20 µs pulse width Fast digitizer mode with sampling rate up to 1.25 MSa/s Fast transient with 1.4 V/µs slew rate at max.
High-speed SMU	PZ2120A	 Precision SMU, 1 MSa/s, 100 fA, 60 V, 3.5 A DC/10.5 A pulse Narrow pulse down to 50 µs pulse width Fast digitizer mode with 1 MSa/s sampling rate Wide output range up to 60V/3.5 A DC/10.5 A pulse Wide dynamic range with seamless measurement ranging
	PZ2121A	 Precision SMU, 15 MSa/s, 100 fA, 60 V, 3.5 A DC/10.5 A pulse Narrow pulse down to 10 µs pulse width Fast digitizer mode with 15 MSa/s sampling rate Wide output range up to 60V/3.5 A DC/10.5 A pulse Wide dynamic range with seamless measurement ranging
High-channel Density SMU	PZ2130A	 5-ch Precision SMU, 100 pA, 30 V, 500 mA DC ¹ High-density (20 Ch in 1U rack height, full width at max.) Low cost/ch for multi-ch applications Fast sampling measurement with a sampling rate of 250 kSa/s Low voltage source noise down to 25 μVrms with PX0107A
	PZ2131A	 5-ch Precision SMU, 500 kSa/s, 10 pA, 30 V, 500 mA DC/pulse ¹ High-density (20 Ch in 1U rack height, full width at max.) Narrow pulse down to 100 μs pulse width Fast digitizer mode with sampling rate at 500 kSa/s Low voltage source noise down to 25 μVrms with PX0107A

1. Ch1 and Ch2 expand the maximum current to +750 mA by over-range capability.

Flexibly configurable and upgradable at lower cost / ch

The Keysight PZ2100A is a precision SMU mainframe that provides 4 slots and flexibly integrates 5 SMU module options. It allows any mixed module configuration, which enables you to configure and upgrade your test system flexibly according to your application requirements.

Figure 2. PZ2100A rear view having 4 slots in 1 U height, full width, rack size

Figure 3. Mixed module configuration example with PZ2110A, PZ2121A, and PZ2131A

Scalable up to 20 channels, 20x higher density than conventional SMU

The PZ2100A integrates up to 20 SMU channels into valuable 1U-height, full-width rack space, and unlike conventional SMUs, it does not require any cooling spacers when stacked. It achieves a 20x smaller footprint than conventional SMUs and enables you to save cost and valuable rack space.

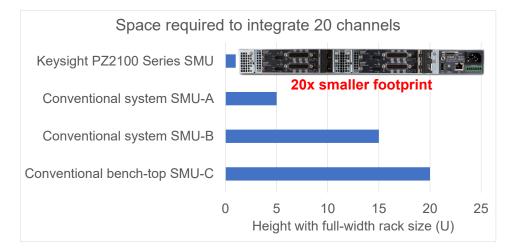


Figure 4. The PZ2100A provides 20x higher channel density integrating 20 channels in 1U rack space

All-in-one SMU integrating pulser/digitizer

Resource integration reduces measurement error

An SMU is an instrument that combines the capabilities of a current source, a voltage source, a current meter, and a voltage meter, along with the ability to switch easily between these various functions. The source and measurement circuitry are closely integrated, allowing users to achieve far better measurement performance with less measurement error than using various independent instruments to make the same measurement.

Feedback mechanism stabilizes voltage and current sourcing

Since SMUs can very accurately measure their own current and voltage output, they have many advantages over conventional power supplies. All SMUs have internal feedback loops that provide instantaneous feedback to the sourcing circuitry, which in turn allows the SMU output to remain accurate and stable even if the load conditions change unexpectedly.

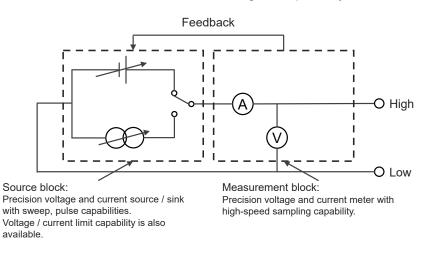


Figure 5. SMU simplified block diagram

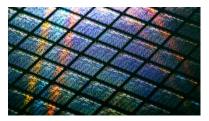
Pulser / digitizer integration

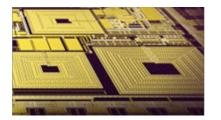
The Keysight PZ2100 Series provides an all-in-one SMU module that integrates pulser / digitizer functions with conventional SMU functions, such as precise DC voltage / current sourcing and measuring. The integration enables the PZ2100 Series to meet emerging dynamic/pulsed measurement requirements without additional instruments.

Limit (compliance) feature prevents device damage

SMUs also possess a voltage and current limit (compliance) feature that allows the user to set limits and protect devices from damage caused by excessive voltage or current.

Wide Application Coverage from DC To Dynamic Measurements


The Keysight PZ2100 Series provides an all-in-one SMU that integrates pulser / digitizer functions into a conventional SMU capability. Its pulser enables narrow pulsed measurements down to 10 µs width, and its digitizer mode enables fast dynamic measurements with a sampling rate of up to 15 MSa/s. An auto measurement range capability enables a wide dynamic range in DC measurements, and the seamless current measurement ranging function offers a wide dynamic range, even in dynamic measurements. These capabilities help the PZ2100 Series cover a wide range of applications, from conventional static DC measurements with high resolution down to 10 fA to emerging dynamic/pulsed measurements without additional instruments.

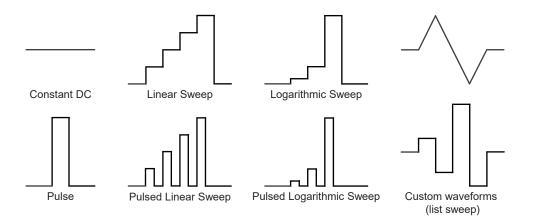
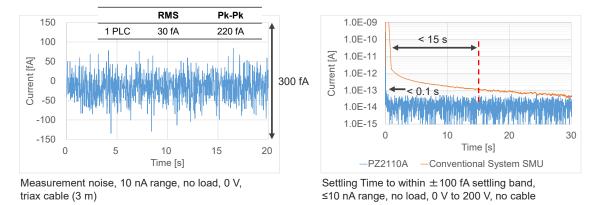

Typical applications

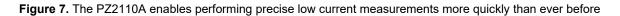
- Optical devices (laser diodes, photodiodes, LEDs, etc.)
- Optoelectronic components (ITLA, CDM, ICR, IC-TROSA, etc.)
- Vertical cavity surface emitting laser (VCSEL) sensors/modules
- Silicon photonics
- Integrated circuit (IC) design verification tests/function tests (RF PA/FEM, analog ICs, RFICs, MMICs, etc.)
- Quantum computing (superconducting, trapped ions, silicon-based, etc.)
- Semiconductor devices (FETs, diodes, transistors, etc.)
- Passive component devices (resistors, varistors, capacitors, etc.)

Integrated sweep and arbitrary waveform measurement functionality

The PZ2100 series' SMU has capabilities that allow it to perform more than just simple DC and pulsed measurements. They have a built-in sweep capability that supports all of the standard sweep parameters, such as linear and logarithmic modes, single and double sweep functions, and constant and pulsed sweep operations. The user can make sweep measurements just as efficiently on the PZ2100 series' SMU under remote control using SCPI commands. The PZ2100 series' GUI helps the user review the sweep settings for debugging and make sweep measurements even from the instrument front panel. This integrated sweep measurement capability improves efficiency and reduces measurement setup time.

The PZ2100 series' SMU has list sweep capability. The list sweep functions enable you to create waveforms with up to 1,000,000 steps with PZ2110A for maximum flexibility, while the others have up to 2,000 steps. You can specify a waveform of arbitrary shape using familiar spreadsheet-compatible data-entry formats. The list sweep feature is especially useful when characterizing devices where the response varies depending on the applied voltage or current. You now have the flexibility to focus on areas of interest.


Figure 6. Built-in functions provide flexible waveform generation capabilities

Keysight PZ2110A High-Resolution SMU

The Keysight PZ2110A is a precision SMU that expands precise measurements from conventional static measurements to fast dynamic measurements. It has a resolution of 10 fA and a noise level of 30 fArms with a 1-power line cycle (PLC) aperture time for static measurement. Its fast current measurement settling time within 0.1 s to within the settling band (\pm 100 fA) enables you to perform precise low current measurements more quickly than ever before. It has a pulse measurement as narrow as 20 µs, while for the fast dynamic measurement, it supports up to 1.25 MSa/s sampling rate with a digitizer mode. Its narrow pulse capability enables you to suppress the self-heat effect to reveal the true characteristics of the devices. It covers currents up to 315 mA and voltages up to 210 V for both source and measurement functions, making it ideal for a wide variety of current versus voltage (IV) measurement tasks that require both high resolution and accuracy. The PZ2110A can accurately perform characterization, parametric tests, and reliability tests of semiconductors, active/passive components, and general electronic devices.

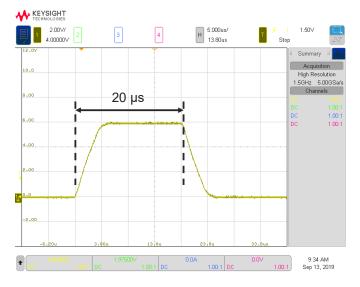


Figure 8. Narrow pulse down to 20 µs enables you to suppress the self-heat effect to reveal the true characteristics of the devices

Keysight PZ2120/21A High-Speed SMU

The Keysight PZ2120A and PZ2121A are high-speed precision SMUs featuring best-in-class narrow pulse width, fast digitizer mode, fast transient response, and seamless current measurement range. They enable a wide range of emerging applications across a wide output range of up to 60 V/3.5 A DC/10.5 A pulse and a high resolution of up to 6 μ V/100 fA.

The PZ2121A is capable of pulsed/dynamic measurements with best-in-class narrow pulse width down to 10 µs and a fast digitizer mode with sampling rates of up to 15 MSa/s. The Keysight PX0105A low inductance cable is well-designed for the PZ2121A and reduces the measurement error caused by the cable inductance in narrow pulsed measurements. These capabilities make the PZ2121A suitable for emerging applications such as vertical-cavity surface-emitting laser (VCSEL) optical devices.

The PZ2120A expands static DC measurements for a wide range of integrated circuit (IC) testing to emerging dynamic measurements with a sampling rate up to 1 MSa/s, seamless current measurement ranging, and narrow pulse width down to 50 μ s. The PZ2120A's fast transient performance enables it to reduce the transient voltage drop due to pulsed loading and recover quickly to its program voltage. These capabilities make the PZ2120A suitable for design verification and production IC testing, such as RF PA/FEM.

In addition, their low measurement noise performance of as low as 400 fArms at 1 PLC enables measurements with shorter aperture times, and their seamless current measurement ranging function enables a wide dynamic range and eliminates range change time, which improves test throughput.

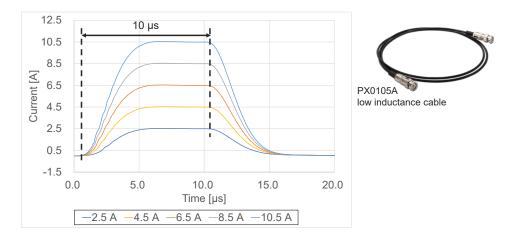


Figure 9. 10 µs narrow pulse output with measuring at 15 MSa/s sampling rate

Keysight PZ2130/31A High-Channel Density SMU

The Keysight PZ2130A and PZ2131A are high-channel density precisionSMUs with 5 channels per module. It allows for the integration of up to 20 SMU channels into valuable 1U height, full width, rack space, and saving space at a low cost per channel for a wide range of applications requiring numerous precision power supplies. The channels can work synchronously in the module and support accurate measurement in the range of up to 30 V / 500 mA with resolution down to 6 μ V / 10 pA (100 pA for the PZ2130A). Besides, Ch1 and Ch2 expand the maximum current to +750 mA by over range capability. The narrow pulse function with a width down to 100 μ s and fast Digitizer Mode with a sampling rate up to 500 kSa/s allow the PZ2131A to expand the conventional static DC measurements to emerging dynamic measurements. Their seamless current measurement ranging function eliminates the time it takes to change the range and expands the dynamic range to cover multiple measurement ranges, which reduces test duration. These capabilities make the PZ2130A and PZ2131A suitable for applications that require numerous precision power supplies, such as semiconductor reliability tests, Optoelectronics, and integrated circuit (IC) tests. The Keysight PX0107A low noise filter adapter lowers its voltage source noise level down to 25 μ Vrms, which makes it suitable for noise-sensitive applications such as quantum computing as well.

Figure 10. PZ2100 with 20 channels configuration integrating four PZ2131A modules

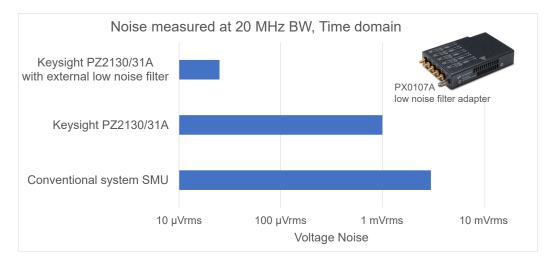
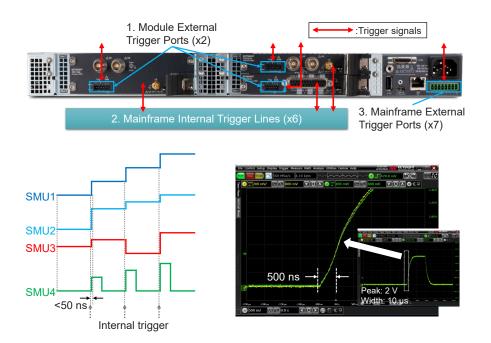


Figure 11. PX0107A dramatically reduces output noise



Single-Box Solution Offers Easy Integration and Time Efficiency

Single-box solution simplifies synchronization with multiple SMUs at <50 ns accuracy

Integrating the source and measurement resources in an SMU allows much tighter synchronization than is possible with separate instruments. In addition, the PZ2100 Series provides flexible triggering options that define the measurement points independently from the sourced current or voltage waveform. You can operate multiple channels in synchronization or independently.

The PZ2100 Series is a single-box solution that simplifies channel stacking and synchronization, which removes integration and coding complexity. The PZ2100A's 6 internal trigger lines enable synchronization among the channels at less than 50 ns accuracy without any cabling. The external trigger ports on the mainframe and modules allow it to synchronize with any external equipment flexibly and accurately. Because the SMUs function as precision power supplies and work synchronously with the other equipment in a wide range of applications, these essential capabilities enable the PZ2100 Series to meet the requirements of various applications.

Figure 12. Internal trigger lines enable channel synchronization at less than 50 ns accuracy, and external trigger ports enable synchronization with any piece of external equipment

User-friendly GUI accelerates the test prototyping, debugging, and troubleshooting

The PZ2100 Series has a user-friendly graphical user interface (GUI) that provides two view modes, meter view, and menu view, and collectively manages a maximum of 20 channels. Select an appropriate view for your purpose to set and review the status of all the channels in a single interface; this helps you accelerate test prototyping, debugging, and troubleshooting.

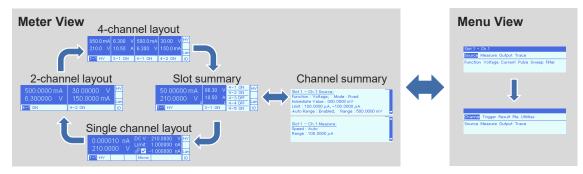


Figure 13. Graphical user interface collectively managing 20 channels at maximum

SCPI programming via LAN/USB/GPIB for easy adoption to various environments

The PZ2100 Series supports Standard Commands for Programmable Instruments (SCPI), a popular and easy-to-understand instrument control protocol commonly used among Keysight SMUs such as the B2900 Series. Because many of its commands are compatible with existing SMUs, you can minimize code conversion work and enable remote control through LAN / USB / GPIB using simple programming to align with various environments.

Figure 14. Remote interface on the PZ2100A rear panel and the PX0110A GPIB cable adapter

Remote control options enable quick measurements without programming

The PZ2100 Series can also be used hand-in-hand with remote control software. This software can accelerate your research, development, and design verification activities, enabling more accurate and reliable data acquisition and more efficient use of the equipment.

PW9251A PathWave IV Curve

The PW9251A PathWave IV Curve is a ready-made GUI software that performs a variety of synchronous current-voltage (IV) measurements on up to 20 channels of SMUs without programming. You can review test results immediately after making measurements using various analysis functions on graphs and tables. Export functions for graphs with markers and tables support efficient reporting. In addition, the test result files contain all the settings, allowing you to review and repeat a test accurately.

	> 000/ 7 1 ×				
	A ABISYA 👂 ZHISYA				
	Plannengenerate and function for the first and f				
	+ A #221864(9)				
	IT I I I I I I I I I I I I I I I I I I				
					dher v
Source Onter 6.000 1	un ib area larea	Dave Delay			QUINET NAL -
Seen Liner Bro. v	Per set				- (1971
	1200A Deard				
	un m interester intere	Ster 0.00000 Y	The Conception of the Concepti	Series	
	19 and 19		totag (d) conta		
					• n •
					1 V
		Compliance 0.100000 A .			
	المسيم من المسير المسيم المسير المسيم المسير الم	Suite Rege Auto v		Reference	
veitage Mannaer 👘 🖚	we want the state of the state	vedage Measure 01			
Current Macoure 👘 🕬	09	Ouriot Mosourc Es Marker Betlage		Bre Relevantine 10	
	المسمور المسمور المسمور المسمور	Door Add W		Artensie Line (1)	
Measure Delay 6.01800 s	and the second sec	Monare Infant	StDHTOuret 900000 mV 46401mA 123		
Henter Steel Normal V		O Mater 2 🥌	at Diff Guest v L2000 V & 12004 1,04		
3 Owered					
					V

Figure 15. PathWave IV Curve Software

BV0003B PathWave BenchVue Power Supply Control App

The BV0003B PathWave BenchVue Power Supply Control App offers easy control of your power supplies, allowing you to effortlessly set parameters, visualize IV data, and quickly build automated tests. With this application, you can monitor and record your power supply output to assess the impact of power draw for specific events, supporting up to 20 channels of SMUs - all without the need for programming.

NV PATHWAVE Power Supply			– 🗆 🗙	AP PATHWAVE Power Supply		– 🗆 ×
en ?	DU Instrument View	Data Logger	🛐 [+ - Instrument 🔮 PZ2100A 🗸	🖻 ? 🕨 Start 📕 Sep	instrument View Data Logger	ST [+-/ Instrument @ PZ2100A V
Settings All On All Off				G Settings		
Image: Another and the answer of th	€ 122331A ₩ Mage ₩ Mage ₩ Mage ₩ Mage ₩ Mage ₩ Mage ₹ 122331A ₩ Mage ₩ Mage ♥ M	11 p22133A Nume Other WW 0.0000000 V Nume Other WW 0.0000000 A 10 P22133A Vibigot Other WW 0.0000000 A 0 UV 10000000 A 10 P2133A Other 0	16 p22191A Mate Mate Mate 10 0.000000 V 0.000000 A 17 p22131A Wate 0.000000 A 18 p22131A Mate Mate 10 p22131A Mate Mate 18 p22131A Mate Mate 19 p2131A Mate Mate 19 p2131A Mate Mate 19 p2131A Mate Mate Mate 19 p2131A Mate Mate Mate Mate 19 p2131A Mate Mate Mate Mate Mate 19 p2131A Mate Mat Mate Mat<	* MWW VWM * MYM MWM * MYM MWW * MMM		
0.000000 A	0.000000 A	0.000000 A	0.000000 A	Show 🗌 Marker Table		n
				En contacto		

Figure 16. PathWave BenchVue Power Supply Control App

Comparison Table by Model

		PZ2110A	PZ2120A	PZ2121A	PZ2130A	PZ2131A	
Number of channels		1	1		5		
Number of slots		2	1		1		
	Max. voltage	210 V	60 V		30 V		
Output range	Max. current (DC)	315 mA	3.5 A		500 mA		
	Max. current (Pulse)	315 mA	10.5 A		N/A	500 mA	
Resolution	Min. voltage	500 nV	6 µV		6 µV		
Resolution	Min. current	10 fA	100 fA		100 pA	10 pA	
Current measurement r	ioise RMS (1 PLC)	30 fArms	400 fArms		75 pArms	35 pArms	
	Peak-to-peak (0.1 - 10 Hz)	< 4 µV	< 12 µV		< 20 µV		
	Peak-to-peak (20 MHz)	< 25 mV	< 30 mV	< 30 mV		< 12 mV	
Voltage source noise	RMS (20 MHz)	< 3 mVrms	< 2.5 mVrms		<pre>< 1 mVrms (< 25 µVrms with PX0107A)</pre>		
	RMS (200 MHz)	< 5 mVrms	< 4.5 mVrms		< 3.3 mVrms		
Min. pulse width		20 µs	50 µs	10 µs	N/A	100 µs	
Max. slew rate		1.4 V/µs	3.5 V/µs		0.15 V/µs		
Digitizer mode		Yes	Yes		No	Yes	
Max. sampling rate		1.25 MSa/s	1 MSa/s	15 MSa/s	250 kSa/s	500 kSa/s	
Auto measurement rang	ging	Yes	Yes		Yes		
Seamless current meas	urement ranging	No	Yes		Yes		
Remote sense (4-wire o	connection)	Yes	Yes		Yes		
Guard shield port for lov	w current measurement	Yes	Yes		Yes		
	Normal mode	Yes	Yes		Yes		
On continue and de	PS mode	Yes	Yes		Yes		
Operation mode	High capacitance mode	No	Yes		No		
	Laser diode mode	No	Yes		No		

Specification

Specification conditions

The measurement and programming accuracy are specified at the module front-panel connector terminals. Accuracy is specified under the following conditions:

Key conditions	PZ2110A	PZ2120/21A	PZ2130/31A			
Temperature	23 °C ± 5 °C 1	0 °C to 50 °C				
Humidity ²	20% to 60% 3	10% to 80% 4				
Warm-up time	40 minutes	40 minutes				
Self-calibration	Performed within the last 24 hours. Ambient temperature changes less that	Performed within the last 24 hours. Ambient temperature changes less than ± 5 °C after self-calibration execution.				
Calibration period	One year	One year				
Aperture time	1 PLC 5 (100 nA to 300 mA ranges, voltage ranges) 1 PLC 10 PLC (1 nA and 10 nA ranges) 1 PLC					
Terminal connection	Kelvin connection					

1. Double for 0 $^{\circ}\text{C}$ to 18 $^{\circ}\text{C},$ and 28 $^{\circ}\text{C}$ to 40 $^{\circ}\text{C}$ unless noted otherwise.

2. Relative Humidity, non-condensing.

3. double for 60% to 70% unless noted otherwise.

4. The maximum % Relative Humidity is up to 40°C and decreases linearly to 48% RH at 50 °C. From 40°C to 50°C, it follows the line of constant dew point.

5. Power line cycle.

PZ2110A Maximum voltage and current

Maximum voltage	Maximum current	Maximum power
± 21 V	± 315 mA	6.6 W
± 105 V	± 105 mA	11 W
± 210 V	± 50 mA	10.5 W

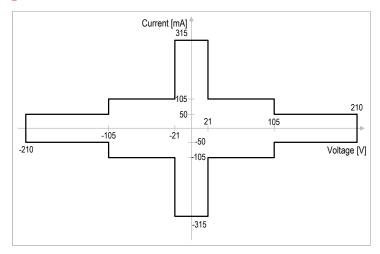


Figure 17. PZ2110A DC voltage and current output capability

PZ2120/21A Maximum voltage and current

DC output capability

Voltage capa	ability	Current capability		
Min	Мах	Min	Мах	
- 0.6 V	+ 5.5 V		+ 3.5 A	
- 2 V	+ 6.3 V		+ 3 A	
- 2 V	+ 14 V		+ 2 A	
- 6.3 V	+ 20 V	- 130 mA	+ 1.5 A	
- 12 V	+ 20 V	- 130 MA	+ 0.8 A	
- 20 V	+ 20 V		+ 0.5 A	
- 50 V	+ 50 V		+ 130 mA	
- 60 V	- 50 V		+ 100 mA	
+ 50 V	+ 60 V	- 100 mA	+ 130 mA	

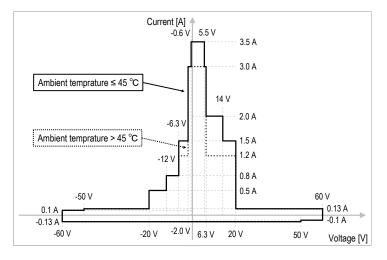
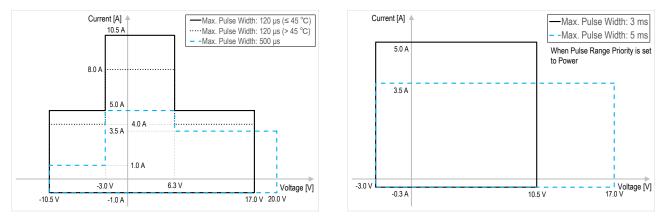
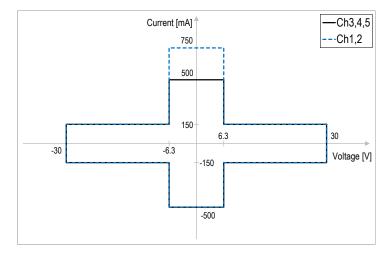


Figure 18. PZ2120/21A DC voltage and current output capability

Pulsed output capability




Figure 19. PZ2120/21A pulsed voltage and current output capability

PZ2130/31A Maximum voltage and current

Maximum voltage and current per channel

Maximum voltage	Channel	Maximum current	Maximum power
± 6.3 V	1, 2	+ 750 mA ¹ , - 500 mA	+ 4.7 W, -3.2 W
± 6.3 V	3, 4, 5	± 500 mA	± 3.2 W
± 30 V	1, 2, 3, 4, 5	± 150 mA	± 4.5 W

1. Over range (150% of 500 mA range) for positive current.

Figure 20. PZ2130/31A voltage and current output capability per channel

Maximum voltage and current per module

Limit current per module to satisfy the equation as below:

Quadrant	Maximum current per module (when channels work with ranges below)				
	6 V range	30 V range	6 V and 30 V ranges mixed		
1 st	3 A	750 mA	(1 - 1)/2 + (1 - 1)/2 + (1 - 1)/2 = (1 -		
2 nd to 4 th	2 A	750 mA	$\left(I_{total_p(6V)}\right) / 3 + \left(I_{total_n(6V)}\right) / 2 + \left(I_{total(30V)}\right) / 0.75 \le 1$		

 $I_{total_p(6V)}$, $I_{total_n(6V)}$, $I_{total(30V)}$ are the sum of the following parameters for the channels working within the specified voltage range. Where + I_{comp} / – I_{comp} are the positive/negative current compliance values.

Parameter	Range	Source functi	on	Value
		Mode	Polarity	
	Voltage	Either	+I _{comp} when +I _{comp} \ge 1.4 x abs(-I _{comp})	
total_p(6V)	6 V	Current	Positive	The source value
1	I _{total_n(6V)} 6 V	Voltage	Either	The absolute $-I_{comp}$ when $+I_{comp} < 1.4 \text{ x abs} (-I_{comp})$
Itotal_n(6V)		Current	Negative	The absolute source value
1		Voltage	Either	The larger one of absolute +Icomp/-Icomp
Itotal(30V) 30 V	Current	Either	The absolute source value	

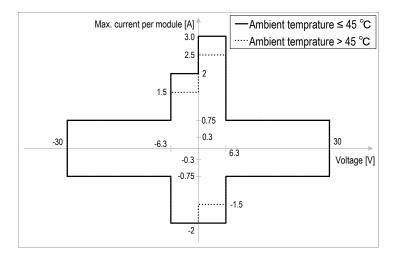


Figure 21. PZ2130/31A voltage and total current output capability per module

PZ2110A Source/measurement specifications and characteristics

Voltage source/measurement specifications

Range	Programming and measurement		Source noise (peak to peak) 0.1 Hz to 10 Hz ²	Max current
	Resolution	Accuracy (% of reading + offset) 23 °C \pm 5 °C 1		
± 0.5 V	0.5 µV	± (0.015% + 120 μV)	< 4 µV	± 315 mA
±2V	2 µV	± (0.015% + 140 μV)	< 5 µV	± 315 mA
±6V	6 µV	± (0.015% + 250 μV)	< 5 µV	± 315 mA
± 20 V	20 µV	± (0.015% + 900 μV)	< 15 µV	± 315 mA
± 40 V	40 µV	± (0.015% + 1 mV)	< 30 µV	3
± 100 V	100 µV	± (0.015% + 2.5 mV)	< 60 µV	3
± 200 V	200 µV	± (0.015% + 2.8 mV)	< 100 µV	± 50 mA (100 mA or less ranges)

1. Double for 0 °C to 18 °C, and 28 °C to 40 °C unless noted otherwise. 2. Supplemental characteristics, 0 V sourced, 10 mA or less ranges. 3. \pm 315 mA (-21 V \leq V₀ \leq 21V), \pm 105 mA (V₀ < -21 V, V₀ > 21 V).

Current source/measurement specifications

Range	Programming and measurement		Source noise (peak to peak) 0.1 Hz to 10 Hz ²	Max current	
	Resolution	Accuracy (% of reading + offset) 23 °C \pm 5 °C ¹			
±1nA	10 fA	± (0.1% + 1.5 pA + 1 fA x V _o) ³	< 200 fA	± 210 V	
± 10 nA	10 fA	± (0.1% + 3 pA + 10 fA x V _o) ³	< 200 fA	± 210 V	
± 100 nA	100 fA	± (0.05% + 20 pA)	< 2 pA	± 210 V	
± 1 µA	1 pA	± (0.05% + 100 pA)	< 2 pA	± 210 V	
± 10 μΑ	10 pA	± (0.04% + 2 nA)	< 80 pA	± 210 V	
± 100 µA	100 pA	± (0.03% + 3 nA)	< 90 pA	± 210 V	
±1mA	1 nA	± (0.03% + 60 nA)	< 8 nA	± 210 V	
± 10 mA	10 nA	± (0.03% + 200 nA)	< 10 nA	± 210 V	
± 100 mA	100 nA	± (0.04% + 6 μA)	< 200 nA	4	
± 300 mA	300 nA	± (0.04% + 20 µA)	< 1 µA	± 21 V (100 V or less ranges)	

1. Double for 0 $^{\circ}\text{C}$ to 18 $^{\circ}\text{C},$ and 28 $^{\circ}\text{C}$ to 40 $^{\circ}\text{C}$ unless noted otherwise.

2. Supplemental characteristics, 0 A sourced.

3. Aperture time: 10 PLC.

4. ± 210 V (-50 mA $\leq I_{\circ} \leq 50$ mA), ± 105 V ($I_{\circ} < -50$ mA, $I_{\circ} > 50$ mA).

Operation mode

Operation mode

Normal mode	Default mode.
PS mode	Only V source mode is available.

Source supplemental characteristics

Max output power and source/sink limits		e/sink limits	11 W (± 21 V at ± 315 mA, ± 105 V at ± 105 mA, ± 210 V at ± operation)	50 mA, four quadrant source or sin	
Current complia	ance setting a	ccuracy	Accuracy is same as current source; minimum value is 1% of range (100 nA to 300 mA ranges) 1 nA (1 nA, 10 nA ranges)		
Voltage complia	ance setting a	ccuracy	Accuracy is same as voltage source; minimum value is 1% of range (6 V to 200 V ranges) 50 mV (500 mV, 2 V ranges)		
	Voltage	All ranges	105% of range		
Over range	0	300 mA range	105% of range		
	Current	Other ranges	115% of range		
Over-temperatu	ire protection		Output turns off then resets at over temperature sensed interna	illy.	
Voltage output settling time			Time required to reach within 0.1% of final value at described to range with 10 mA compliance, filter auto settings $< 45 \ \mu s (500 \ mV to 40 \ V ranges, open load)$ $< 100 \ \mu s (100 \ V range, 100 \ k\Omega \ load)$ $< 200 \ \mu s (200 \ V range, 100 \ k\Omega \ load)$	ad condition; step is 10% to 90%	
Slew rate			Step is 0 V to + 200 V at open load condition 1.4 V/µs (PS mode with 50 mA compliance) 1 V/µs (Normal mode with 10 mA compliance)		
Current output settling time			Time required to reach within 0.1% ¹ of final value at described load condition; step is 10% to 90% range with 6 V compliance, filter auto settings < 18 ms (1 nA, 10 nA ranges, 50 M Ω load) < 1.2 ms (100 nA, 1 µA ranges, 500 k Ω load) < 400 µs (10 µA, 100 µA ranges, 5 k Ω load) < 70 µs (1 mA range, 50 Ω load) < 40 µs (10 mA range, 50 Ω load) < 40 µs (100 mA range, 500 m Ω load) < 40 µs (300 mA range, 100 m Ω load)		
V source noise	(BW = 20 MH	lz)	< 3 mVrms, < 25 mVp-p, 20 V range, 0 V sourced (10 mA or less ranges) < 6 mVrms, < 40 mVp-p, 20 V range, 0 V sourced (100 mA, 300 mA ranges)		
V source noise	(BW = 200 M	Hz)	< 5 mVrms, < 50 mVp-p, 20 V range, 0 V sourced		
Voltage range s	witching trans	sient noise	<250 mV, 100 k Ω load, 20 MHz bandwidth		
Current range s	witching trans	sient noise	$<$ 70 mV, 100 k Ω load, 20 MHz bandwidth, V source mode, 20	V range	
			Time to recover to within the settling band With 2.2 μ F cap (ESR = 50 m Ω) at load, remote sensing at cap 6 V range with 5 V source, 300 mA compliance in Normal/PS m		
Load transient	response time	in voltage source mode	Rise time (10% to 90%)	1 µs	
			Settling band (with a step from 30 mA to 270 mA)	± 20 mV	
			Recovery time	< 70 µs	
Voltage load re	gulation		Load regulation error is included in voltage accuracy specificati	on (typical)	
Current load regulation			Load regulation error is included in current accuracy specification (typical)		

1. 0.3% for 100 mA, 300 mA ranges.

Measurement supplemental characteristics

weasurement s	Neasurement suppremental characteristics					
	Voltage	200 V range	105% of range			
Over range		Other ranges	110% of range			
Over range	Current	300 mA range	105% of range			
		Other ranges	115% of range			
Current measurement noise (1 PLC, 10 nA range) ¹		1 PLC, 10 nA range) ¹	30 fArms, 220 fAp-p			

Measurement supplemental characteristics

1. Observed data.

Current measurement noise (observed data)

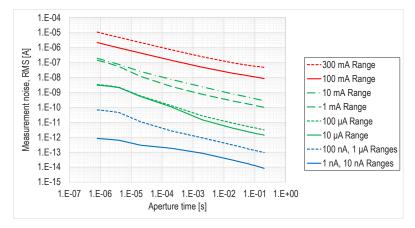


Figure 22. Current measurement noise

Programmable output resistance ¹

In its default state, the PZ2110A behaves like either an ideal voltage source with a negligibly small source resistance or an ideal current source with a huge source resistance. The programmable output resistance feature allows you to specify a particular output resistance.

Mode	Constant resistance
	- (Load Resistance/2) \leq R _s \leq Load Resistance, for resistive load
Series resistance $(\ensuremath{R}\xspace_{s})$ at voltage source	$R_s ≤ 2$ kΩ at 1 mA,10 mA,100 mA, and 300 mA ranges, ≤ 40 kΩ at 10 μA and 100 μA ranges, ≤ 200 kΩ at 1 μA range, or ≤ 100 kΩ at other ranges.
	R _s can be limited by capacitive load
	Load Resistance $\leq R_{sh} \leq 2 \text{ G}\Omega$, for resistive load
Shunt resistance $(R_{\mbox{\tiny sh}})$ at current source	$R_{sh} \ge 100 \text{ k}\Omega$ at 1 nA and 10 nA range, $\ge 10 \text{ k}\Omega$ at 100 nA and 1 µA range, $\ge 1 \text{ k}\Omega$ at 10 µA and 100 µA range, or $\ge 200\Omega$ at other ranges.
	R _{sh} can be limited by capacitive load

1. Programmable output resistance is only available for DC output.

PZ2120/21A Source/measurement specifications and characteristics

Voltage source/measurement specifications

Range	Programming	and measurement	Source noise (peak to peak) Max current 0.1 Hz to 10 Hz ²		
	Resolution	Accuracy (% of reading + offset), Tcal ¹ ± 5 °C	Tempco (% of reading + offset) / °C, 0 °C to 50 °C		
±6V	6 µV	± (0.02% + 300 μV)	± (0.0005%+1 μV)	< 12 µV	Varies ³
± 20 V	60 µV	± (0.02% + 3 mV)	± (0.0005%+1 μV)	< 75 µV	Varies ³
± 60 V	60 µV	± (0.02% + 3 mV)	± (0.0005%+1 μV)	< 75 µV	Varies ³

1. Tcal: Ambient temperature when self-calibration was performed.

Supplemental characteristics, 0 V sourced, 10 mA range.
 See Figure X and Y.

Current source/measurement specifications

Range	Programming and measurement			Source noise (peak to peak) 0.1 Hz to 10 Hz ²	Max voltage
	Resolution	Accuracy (% of reading + offset), Tcal $^{1} \pm 5 \ ^{\circ}$ C	Tempco (% of reading + offset) / °C, 0 °C to 50 °C		
± 100 nA	100 fA	± (0.07% + 100 pA)	± (0.0006% + 2 pA)	< 1.5 pA	± 60 V
± 1 µA	1 pA	± (0.07% + 100 pA)	± (0.0006% + 4 pA)	< 2.5 pA	± 60 V
± 10 µA	10 pA	± (0.05% + 700 pA)	± (0.0006% + 135 pA)	< 30 pA	± 60 V
± 100 µA	100 pA	± (0.05% + 6 nA)	± (0.0006% + 200 pA)	< 200 pA	± 60 V
±1mA	1 nA	± (0.05% + 60 nA)	± (0.0006% + 2 nA)	< 3 nA	± 60 V
± 10 mA	10 nA	± (0.05% + 600 nA)	± (0.0006% + 20 nA)	< 20 nA	± 60 V
± 500 mA	500 nA	± (0.13% + 30 μA)	± (0.0006% + 1 μA)	< 1.5 µA	Varies ³
±1A	1 µA	± (0.13% + 60 μA)	± (0.0006% + 2 μA)	< 2.5 µA	Varies ³
±3A	3.5 µA	± (0.3% + 1 mA)	± (0.0025% + 33 μA)	< 25 µA	Varies ³
± 3.5 A	3.5 µA	± (0.3% + 1 mA)	± (0.0025% + 33 μA)	< 25 µA	Varies ³
		± (0.13% + 1 mA) ^{4, 5}	± (0.002% + 33 μA) ^{4, 5}	N/A	-10.5 V, 17 V
±5Α 5μΑ	ο μΑ	± (0.3% + 1 mA) 6	± (0.002% + 33 μA) ⁶	N/A	-3 V, +10.5 V
± 10 A 4	10 µA	± (0.13% + 1 mA) ⁵	± (0.002% + 33 μA) ⁵	N/A	-3 V, + 6.3 V

1. Tcal: Ambient temperature when self-calibration was performed.

2. Supplemental characteristics, 0 A sourced, 6 V range.

3. See Figure X and Y.

4. Typical. Only current source mode is available.

5. Aperture time: 0.002 PLC (40 µs). Repeat measurements 10 times and average them.

6. When Pulse Range Priority is set to Power. Aperture time: 0.1 PLC (2 ms). Repeat measurements 10 times and average them.

Range	Programming and measurement			
	Resolution	Accuracy (% of reading + offset), Tcal ¹ ± 5 °C	Tempco (% of reading + offset) / °C, 0 °C to 50 °C	
±6V	6 µV	± (0.055% + 300 μV)	± (0.0005%+1 μV)	
± 20 V	60 µV	± (0.055% + 3 mV)	± (0.0005%+1 μV)	
± 60 V	60 µV	± (0.055% + 3 mV)	± (0.0005%+1 μV)	

Remote transient voltage measurement specifications

1. Tcal: Ambient temperature when self-calibration was performed.

Seamless current measurement ranging specifications

The seamless current measurement ranging function enables the SMU channels to make a wide dynamic range measurement without range changing. It automatically detects which current measurement range will return the most precise measurement.

Range	Programming and measurement				
	Resolution	Accuracy (% of reading + offset), Tcal ¹ ± 5 °C	Tempco (% of reading + offset) / °C, 0 °C to 50 °C		
± 10 mA	10 nA	± (0.23% + 5.5 μA)	± (0.0006% + 20 nA)		

1. Tcal: Ambient temperature when self-calibration was performed.

Example of calculating accuracy with temperature coefficient

Calculate the accuracy of a 500 μ A output in the 1 mA range. Assume the ambient temperature is 15 °C within the last 24 hours after self-calibration was performed at 19 °C. The ambient temperature changes less than ± 5 °C after self-calibration execution but falls outside of 23 °C ± 5 °C.

Temperature Variation =
$$(23^{\circ}\text{C} - 5^{\circ}\text{C}) - 15^{\circ}\text{C} = 3^{\circ}\text{C}$$

Accuracy =
$$(500 \ \mu\text{A} * 0.03\% + 60 \ \text{nA}) + \frac{500 \ \mu\text{A} * 0.0006\% + 2 \ \text{nA}}{1^{\circ}\text{C}} * 3^{\circ}\text{C}$$

= 210 nA + 15 nA = 225 nA

Therefore, the actual output will fall within 225 nA of 500 μ A.

Operation mode

Operation mode

Normal mode	Default mode.
PS mode	Only V source mode is available.
High capacitance mode	Only V source mode is available. Current ranges from 10 µA to 3.5 A are available.
Laser diode mode	Both V and I source modes are available in applying pulse with the fast rise time.

Source supplemental characteristics

Source supple	mental chara	cteristics			
Max output power and source/sink limits			30 W (+ 20V at + 1.5 A), + 3.5 A at + 5.5 V in 1st quadrant 10 W (- 20 V at +0.5 A), + 3.5 A at - 0.6 V in 2 nd quadrant 7.8 W (- 60 V at - 130 mA), - 130 mA at - 60 V in 3 rd quadrant 6.5 W (50 V at - 130 mA), - 130 mA at + 50 V in 4 th quadrant)		
Current complia	ince setting ad	ccuracy	Accuracy is same as current source; minimum value is 1% of range (100 nA to 3.5 A ranges)		
Voltage complia	ance setting a	ccuracy	Accuracy is same as voltage source; minimum value is 1% of range (6 V to 60 V ranges)		
	Voltage	6 V range	105% of range		
	voliage	Other ranges	100% of range		
		10 A range	105% of range for positive current 10% of range for negative current		
Over range		5 A range	100% of range for positive current 20% of range for negative current (6% when Pulse Range Priv	ority is set to Power)	
	Current	3 A, 3.5 A ranges	100% of range for positive current (Negative current is limited		
		500 mA, 1 A ranges	105% of range for positive current (Negative current is limited	to -130 mA)	
		Other ranges	105% of range		
Over-temperatu	re protection		SMU shutdowns at over temperature sensed internally		
Voltage output settling time			Time required to reach within 0.1% of final value at described load condition; step is 10% to 90% range with 10 mA compliance, filter auto settings < 10 μs (6 V range, open load) < 13 μs (20 V range, 50 kΩ load) < 26 μs (60 V range, 200 kΩ load)		
Slew rate			Step is 0 V to 60 V at open load condition 3.5 V/µs (PS mode with 500 mA range 130 mA compliance) 2.3 V/µs (Normal mode with 10 mA range 10.5 mA compliance)		
Current output s	settling time ([)C)	Time required to reach within 0.1% of final value at described load condition; step is 10% to 90% range; with 6 V or 5.5 V compliance, filter auto settings $< 3.2 \text{ ms} (100 \text{ nA}, 1 \mu\text{A} \text{ ranges}, 500 k\Omega \log 4)$ $< 600 \mu\text{s} (10 \mu\text{A}, 100 \mu\text{A} \text{ ranges}, 5 k\Omega \log 4)$ $< 80 \mu\text{s} (1 \text{mA}, 100 \mu\text{A} \text{ ranges}, 50 \Omega \log 4)$ $< 20 \mu\text{s} (500 \text{mA}, 1 \text{A} \text{ ranges}, 100 \text{m}\Omega \log 4)$ $< 70 \mu\text{s} (3 \text{A}, 3.5 \text{A} \text{ ranges}, 100 \text{m}\Omega \log 4)$		
Current output s	settling time (F	Pulse)	Time required to reach within 1% of final value at described load condition; step is 100 mA to 90% range for transient priority mode and is 10% to 90% range for power priority mode; with 6 V compliance; load is connected through 1.5 m low inductance BNC cable (PX0105A-001) < 50 μ s (Power priority mode, 5 A range, 100 m Ω load) < 4.5 μ s (transient priority mode, 5 A range, 100 m Ω load) < 6 μ s (transient priority mode, 10 A range, 100 m Ω load)		
V source noise	(BW = 20 MH	≤10 mA ranges	< 2.5 mVrms, < 30 mVp-p, 0 V sourced		
	201111	>10 mA ranges	< 3.5 mVrms, < 40 mVp-p, 0 V sourced		
V source noise	(BW = 200 MI	≤10 mA ranges	< 4.5 mVrms, < 60 mVp-p, 0 V sourced		
	200 111	>10 mA ranges	< 6 mVrms, < 70 mVp-p, 0 V sourced		
			Time to recover to within the settling band With 4.7 μ F cap (ESR = 50 m Ω) at load, remote sensing at ca 6 V range with 4 V source, + 3.5 A/- 130 mA compliance in No		
Load transient r	esponse time	in voltage source mode	Rise time (10% to 90%)	1 µs	
			Settling band (with a step from 0.3 A/1.5 A to 1.5 A/0.3 A)	± 20 mV	
			Recovery time	< 20 µs	
Voltage load regulation			Load regulation error is included in voltage accuracy specifica	tion (typical)	
Current load regulation 1			Load regulation error is included in current accuracy specification as specification for $ V_o \le 40$ V, as typical for 40 V < $ V_o $		

1. Vo is the output voltage.

Measurement supplemental characteristics

	Voltago	6 V range	105% of range
	Voltage	Other ranges	100% of range
Over range		10 A range	105% of range for positive current 10% of range for negative current
		5 A range	100% of range for positive current 20% of range for negative current (6% when Pulse Range Priority is set to Power)
	Current	3 A, 3.5 A ranges	100% of range for positive current (Negative current is limited to -130 mA)
		500 mA, 1 A ranges	105% of range for positive current (Negative current is limited to -130 mA)
		Other ranges	105% of range
Current measur	Current measurement noise (1 PLC)		400 fArms (100 nA range), 600 fArms (1 µA range)

Measurement supplemental characteristics

PZ2130/31A Source/measurement specifications and characteristics

Voltage source/measurement specifications

Range	Programming and measurement			Source noise (peak to peak) 0.1 Hz to 10 Hz ²	Max current
	Resolution	Accuracy (% of reading + offset), Tcal ¹ ± 5 °C	Tempco (% of reading + offset) / °C, 0 °C to 50 °C		
±6V	6 µV	± (0.015% + 600 μV)	± (0.0005%+1 μV)	< 20 µV	Varies ³
± 30 V	30 µV	± (0.015% + 1.2 mV)	± (0.0005%+1 μV)	< 85 µV	± 150 mA

1. Tcal: Ambient temperature when self-calibration was performed.

2. Supplemental characteristics, 0 V sourced, 500 mA range.

3. 750 mA and -500 mA for channels 1 and 2; \pm 500 mA for channels 3, 4, and 5.

Current source/measurement specifications

Range	Programming	and measurement	Source noise (peak to peak) 0.1 Hz to 10 Hz ²	Max voltage	
	Resolution	Accuracy (% of reading + offset), Tcal ¹ ± 5 °C	Tempco (% of reading + offset) / °C, 0 °C to 50 °C		
± 10 µA ³	10 pA	± (0.03% + 1.6 nA)	± (0.002% + 10 pA)	< 170 pA	Varies 4
± 100 µA	100 pA	± (0.03% + 16 nA)	± (0.002% + 100 pA)	< 440 pA	Varies 4
±1mA	1 nA	± (0.03% + 160 nA)	± (0.002% + 1 nA)	< 30 nA	Varies 4
± 10 mA	10 nA	± (0.03% + 1.6 μA)	± (0.002% + 10 nA)	< 35 nA	Varies 4
± 100 mA	100 nA	± (0.03% + 24 μA)	± (0.002% + 150 nA)	< 2.5 µA	Varies 4
± 500 mA	500 nA	± (0.05% + 125 μA)	± (0.004% + 1 μA)	< 3.5 µA	± 6.3 V

1. Tcal: Ambient temperature when self-calibration was performed.

2. Supplemental characteristics, 0 A sourced, 6 V range.

3. 10 μA range is available only with the PZ2131A.

4. \pm 30 V for voltage source, \pm 31.5 V for voltage measurement.

Example of calculating accuracy with temperature coefficient

Calculate the accuracy of 500 μ A output in the 1 mA range. Assume the ambient temperature is 15 °C within the last 24 hours after self-calibration was performed at 19 °C. The ambient temperature changes less than ± 5 °C after self-calibration execution but falls outside of 23 °C ± 5 °C.

Temperature Variation =
$$(23^{\circ}\text{C} - 5^{\circ}\text{C}) - 15^{\circ}\text{C} = 3^{\circ}\text{C}$$

Accuracy =
$$(500 \ \mu\text{A} * 0.03\% + 160 \ \text{nA}) + \frac{500 \ \mu\text{A} * 0.002\% + 1 \ \text{nA}}{1^{\circ}\text{C}} * 3^{\circ}\text{C}$$

= 310 nA + 33 nA = 343 nA

Therefore, the actual output will be within 343 nA of 500 μ A.

Operation mode

Operation mode	
Normal mode	Default mode.
PS mode	Only V source mode is available.

Seamless current measurement ranging

The seamless current measurement ranging function enables the SMU channels to make a wide dynamic range measurement without range changing. It automatically detects which current measurement range will return the most precise measurement.

Range group	Available ranges
High group	500 mA, 100 mA, 10 mA, 1 mA ranges
Low group	10 mA, 1 mA, 10 μA ranges

Note:

- The range group is selected automatically by the compliance setting value. When it is set to more than 10 mA, the range group is set to 'High'. Otherwise, it is set to 'Low'.
- When the range group is set to 'Low', 5% (typical) error is added to its compliance setting accuracy.

Source supplemental characteristics

Max output pov	ver and source	sink limits	17.6 W, 3 A in 1st quadrant, 12.6 W, 2 A in the other quadrants (6 V range) 22.5 W, 0.75 A (30 V range)				
Current compliance setting accuracy		Accuracy is same as current source; minimum value is 1% of range (10 μ A to 500 mA ranges)					
Voltage compliance setting accuracy		Accuracy is same as vol minimum value is 1% of	tage source;				
6 V range		105% of range		,,			
	Voltage	30 V range	100% of range				
Over range				ative current for Ch 1, 2 4, 5	with seamless m	easurement ranging function	
Over-temperati	ire protection		enabled with low group SMU shutdowns at over	temperature sensed int	ernally		
Voltage output			Time required to reach v range with compliance s < 85 µs (PS mode with 6	vithin 0.1% of final value et to 100% of the range S V range, 1 mA or more	e at described loa , filter auto settin		
Slew rate			Step is 0 V to 30 V at open load condition 0.15 V/µs (PS mode with 10 mA compliance) 0.1 V/µs (Normal mode with 10 mA compliance)				
Current output settling time		Time required to reach within 0.1% of final value at described load condition; step is 10% to 90% range with 6 V compliance, filter auto settings < 2.0 ms (10 μ A range, 1 k Ω load) < 1.4 ms (100 μ A range, 1 k Ω load) < 200 μ s (1 mA range, 10 Ω load) < 140 μ s (10 mA range, 10 Ω load) < 110 μ s (100 mA range, 100 m Ω load) < 90 μ s (500 mA range, 100 m Ω load)					
V source noise	(BW = 20 MH	z)	< 1 mVrms, < 12 mVp-p, 6 V range (100 mA range, 30 mA compliance)				
V source noise	(BW = 200 M	Hz)	< 3.3 mVrms, < 40 mVp-p, 6 V range (100 mA range, 30 mA compliance)				
			Time to recover to within the settling band With 2.2 μ F cap (ESR = 50 mΩ) at load, remote sensing at cap 6 V range with 500 mA compliance in PS mode				
Load transient	response time	in voltage source mode	Rise time (10% to 90%)			1 µs	
			Settling band (with a ste	p from 50 mA to 450 m/	A)	± 20 mV	
			Recovery time			< 70 µs	
			Up to 1 V drop per lead				
			6 V range	Hi-Lo: ± 6.5 V maxim	num		
Remote sense	maximum lead	l drop	30 V range	Hi-Lo: ± 25.5 V maxi function enabled with		current measurement ranging	
				Hi-Lo: ± 30.5 V maxi	mum (For the ot	her conditions)	
Voltage load re	gulation		Load regulation error is i	ncluded in voltage accu	racy specificatio	n (typical)	
				V₀ ≤ 10 V	0 ppm		
Current load re	gulation 1		1 mA, 100 mA ranges	$10 \text{ V} \le V_0 \le 20 \text{ V}$	(V _o -10 V) *	5 ppm of range	
	guiation			20 V < V _o	((V ₀ -20 V) *	* 10 ppm + 50 ppm) of range	
		Other ranges	0 ppm				

Source supplemental characteristics

1. V_{\circ} is the output voltage.

Measurement supplemental characteristics

Voltag Over range Curren	Voltago	6 V range	105% of range	
	vollage	30 V range	105% of range for measurement	
	Current	500 mA range	150% of range with positive current for Ch 1, 2 100% of range with negative current for Ch 1, 2 100% of range for Ch 3, 4, 5	
	Current	Other ranges	105% of range 100% of range for 1 mA, 10 mA ranges if used with seamless measurement ranging function enabled with low group	
Current measur	ement noise (1 PLC)	35 pArms for 10 μA range, and 75 pArms for 100 μA range	

Measurement supplemental characteristics

External low noise filter supplemental characteristics

The PZ2130A and PZ2131A support a dedicated external low-noise filter (PX0107A); it is available as an accessory. It connects to the Dsub-25 outputs of the PZ2130A and PZ2131A output channels.

Maximum output range		30 V / 150 mA (DC)		
Output connector		SMB		
Output residual resistance		65 mΩ nominal		
	0.1 to 10 Hz	Same as voltage specification		
Voltage source noise 10 Hz to 20 MHz		25 μVrms (6 V range), 110 μVrms (30 V range)		
Voltage source settling time 1		5.5 ms (6 V range), 17.5 ms (30 V range)		
Currented reason	Voltage	6 V, 30 V ranges		
Supported ranges	Current	10 µA to 500 mA ranges (± 150 mA maximum)		
Maximum capacitive load		5 µF		
Dimensions		19.5 mm (W) x 62.7 mm (H) x 94.8 mm (D). Depth including connector: 107.5 mm.		
Weight		0.17 kg		

External low noise filter supplemental characteristics

1. Time required to reach within 0.1 % of final value at open load condition. Step is 10 % to 90 % range. At 6 V / 30 V ranges, 100 mA limit/100 mA range.



Figure 23. Voltage source noise density of the PZ2130/31A with the PX0107A external low noise filter (Observed data)

Pulse source supplemental characteristics

	PZ2110A	PZ2120A	PZ2121A	PZ2130A	PZ2131A
Programmable pulse width	20 µs to 1 s	50 µs to 1 s	5 µs to 1 s	N/A	50 µs to 1 s
Minimum pulse width programming resolution	0.2 µs				
Pulse width programming accuracy	0.5 % ± 2 μs	$0.5 \% \pm 2 \ \mu s$			
Pulse period programming accuracy	0.5 % ± 4 µs				
Pulse width definition	The time from 10	% leading to 90% trail	ling edge (Figure 24)		

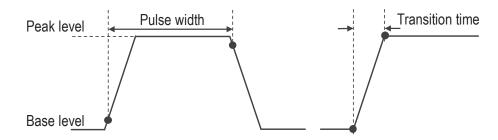


Figure 24. Definition of the pulse parameters and the transition time

Note: Transition time is defined as the time from "Source settling band" to "100% - Source settling band" leading edges (Figure 24).

PZ2110A

Transition time at the given voltage, current and settling conditions (observed data)

Source value	Limit value	Operation mode	Load	Source settling band (% of range)	Transition time ¹
200 V	50 mA	Standard	100 kΩ	0.1%	2.5 ms
300 mA	6 V	Standard	100 mΩ	0.3%	40 µs

1. Transition time is defined as the time from "Source settling band" to "100% - Source settling band" leading edges (Figure 24).

PZ2120/21A

Range	Pulsed				
	Max voltage	Max peak current	Max base current	Programmable pulse width ¹	Max duty cycle
	+ 60 V	+130 mA	+130 mA	5 µs to 1 s	99.9999%
	+ 20 V	+ 1.5 A	+ 1.5 A	5 µs to 1 s	99.9999%
DC ranges	+ 14 V	+ 2 A	+ 2 A	5 µs to 1 s	99.9999%
	+ 6.3 V	+ 3 A	+ 3 A	5 µs to 1 s	99.9999%
	+ 5.5 V	+ 3.5 A	+ 3.5 A	5 µs to 1 s	99.9999%
	+ 6.3 V	+10.5 A	105 mA	5 µs to 120 µs	1%
	+ 6.3 V	+ 5 A	105 mA	5 µs to 500 µs	3%
	+ 17 V	+ 5 A	105 mA	5 µs to 120 µs	1%
Pulse ranges	+ 20 V	+ 3.5 A	105 mA	5 µs to 500 µs	5%
	+ 20 V	+ 1 A	105 mA	5 µs to 500 µs	3%
	+ 10.5 V ²	+ 5 A ²	1.05 A ²	5 µs to 3 ms ²	10% ²
	+ 17 V ²	+ 3.5 A ²	1.05 A ²	5 µs to 5 ms ²	15% ²

Minimum programmable pulse width is 50 µs for the PX2120A.
 When Pulse Range Priority is set to Power with 5 A range.

Transition time at the given voltage	, current and settling conditions	(observed data)
--------------------------------------	-----------------------------------	-----------------

Source value	Limit value	Operation mode	Load	Source settling band (% of range)	Transition time ¹
60 V	130 mA	Standard	200 kΩ	0.1%	1.1 ms
60 V	130 mA	PS	200 kΩ	0.1%	30 µs
3.5 A	6 V	Standard	100 mΩ	1%	40 µs
5 A	6 V	Standard	100 mΩ	5%	30 µs

1. Transition time is defined as the time from "Source settling band" to "100% - Source settling band" leading edges (Figure 24)

PZ2131A

Transition time at the given voltage, current and settling conditions (observed data)

Source value	Limit value	Operation mode	Load	Source settling band (% of range)	Transition time ¹
6.3 V	500 mA	Standard	15 Ω	0.1%	270 µs
6.3 V	500 mA	PS	15 Ω	0.1%	75 µs
30 V	150 mA	Standard	220 Ω	0.1%	4.9 ms
30 V	150 mA	PS	220 Ω	0.1%	230 µs
500 mA	6 V	Standard	100 mΩ	0.1%	85 µs

1. Transition time is defined as the time from "Source settling band" to "100% - Source settling band" leading edges (Figure 24)

Timer and triggering supplemental characteristics

Timer					
Timestamp		Timer value automatically saved when each measurement is triggered			
Trigger timing resolution	ı	4 µs to 100 ms			
Accuracy		± 100 ppm			
Arm/trigger delay		0 µs to 100,000 s			
Arm/trigger interval		4 µs to 100,000 s			
Arm/trigger event	PZ2110A	1 to 1,000,000 (count)			
	PZ2120/21A	1 to 500,000 (count)			
	PZ2130/31A	1 to 200,000 (count)			

Model	Available sampling rates ¹
PZ2110A	(1.25 MSa/s)/N where N=1, 2, 3,, 2 ²⁴
PZ2120A	(1 MSa/s)/N where N=1, 2, 3,, 2 ²¹
PZ2121A	(15 MSa/s)/N where N=1, 2, 3,, 2 ²⁵
PZ2130A	(250 kSa/s)/N where N=1, 2, 3,, 2 ¹⁹
PZ2131A	(500 kSa/s)/N where N=1, 2, 3,, 2 ²⁰

1. Specification.

Triggering parameter		PZ2110A	PZ2120A	PZ2121A	PZ2130A	PZ2131A		
DIO Trieger Input trigger to	Source/sense trigger delay	≤ 5 µs						
DIO Trigger Input trigger to	Source/sense trigger jitter	≤ 4.5 µs						
SMU External Trigger lengt trigger to	Source/sense trigger delay	≤ 5 µs						
SMU External Trigger Input trigger to	Source/sense trigger jitter	≤ 4 µs						
	Polarity	Configurable						
SMU External Trigger 1,2 (Input Triggers)	Minimum pulse width	200 ns, nomin	al					
	Level	3.3 V CMOS						
	Polarity	Configurable						
SMU External Trigger 1,2 (Output Triggers)	Minimum pulse width	Configurable between 200 ns and 12.8 µs, nominal						
	Level	3.3 V CMOS						
Synchronization by internal trigger line	< 50 ns							
	Digitizer Mode ON	800 ns	1 µs	67 ns	N/A	2 µs		
Minimum trigger interval	Digitizer Mode OFF	4 µs						

Other supplemental characteristics

Input/output characteristics

		PZ2110A	PZ2120/21A	PZ2130/31A		
Sensing modes		2-wire or 4-wire (remote-sensiti	2-wire or 4-wire (remote-sensing) connections			
Low terminal connection		Chassis grounded or floating				
Output connectors		Triaxial jack for high force and SMB jack for low sense	high sense	Dsub 25 pin jack		
		Phoenix Contact COMBICON (TRIG1, TRIG2, Int Lock, Frar	•			
External I/O		6 Position Terminal Block Header	6 Position Terminal Block Header	5 Position Terminal Block Header		
Maximum guard offset voltage		< 2 mV				
Remote sense operation range (Maximum	High	1 V				
voltage between force and sense)	Low	1 V	0.3 V	1 V		
Voltage source output resistance	1	< 0.3 Ω (non-kelvin)	< 0.02 Ω (≥ 10 μA range) < 300 Ω (< 10 μA range)	< 0.2 Ω (≥ 1 mA range) < 1.3 Ω ¹ (< 1 mA range)		
Current source output resistance		> 10 TΩ (1 nA range)	> 0.6 TΩ (100 nA range)	> 10 GΩ (10 μA range)		
	Sense	10 Ω	1Ω	1 Ω		
Maximum allowable cable resistance	Force	10 Ω (I_0 ≤ 100 mA), 3 Ω (I_0 > 100 mA)	$3 \Omega (I_{o} \le 100 \text{ mA})$ $0.3 \text{ V}/I_{o} \Omega (I_{o} > 100 \text{ mA})$	10 Ω (l₀ ≤ 100 mA) 1 V/l₀ Ω (l₀ > 100 mA)		
Maximum load capacitance		100 μF (ESR ≥ 25 mΩ) ²	100 μF (ESR ≥ 25 mΩ) ³	10 μF (ESR ≥ 50 mΩ)		
Guard output impedance		610 Ω (nominal)	3.1 kΩ (nominal)	6.8 kΩ (nominal)		
Maximum DC floating voltage		± 40 V between low force and chassis				

Valid for Low group when seamless current measurement ranging function is enabled as well.
 100 mA to 300 mA ranges.
 1 mA or more ranges in Normal Mode. 10 μA or more ranges in High capacitance mode.

System Speeds

Maximum sweep operation reading rates (reading/second) for 50 Hz.

Measure speed	Measure to memory	Measure to HiSLIP	Measure to GPIB	Source measure to memory	Source measure to HiSLIP	Source measure to GPIB
< 0.001 PLC	> 102,000	> 99,100	> 26,400	> 99,800	> 97,200	> 26,200
0.001 PLC	> 38,800	> 38,300	> 18,500	> 38,400	> 38,000	> 18,500
0.01 PLC	5,000	4,990	4,380	4,990	4,980	4,380
0.1 PLC	500	500	493	500	500	493
1 PLC	50	50	50	50	50	50

Operation reading rate varies by type of modules and number of sweep steps. Digitizer mode is set off. Number of sweep steps is specified.

Environmental specifications

Environment for use in indoor facilities		PZ2100A	PZ2110A	PZ2120/21A	PZ2130/31A		
Operating	Temperature	0 °C to 55 °C	0 °C to 40 °C	0 °C to 50 °C			
Operating	Humidity ¹	10% to 80% ²	15% to 70%	10% to 80% ³			
Otorea	Temperature	-30 °C to 70 °C	-20 °C to 60 °C	-30 °C to 70 °C			
Storage	Humidity ¹	5% to 90%					
Altitude		Operating: 0 m to 2,0	000 m; storage: 0 to 4,600 n	ı			
Power supply	50/60 Hz (frequency tolerance +/-5%) 100-240V (voltage tolerance +/-10%), wer supply 400Hz (frequency tolerance +/-10%) 100-120V (voltage tolerance +/-10%) 500 VA maximum),			
EMC			IEC61326-1/EN61326-1, CISPR11/EN55011 Group 1 Class A, ICES-001 Group 1 Class A, AS/NZS CISPR11 Group 1 Class A, KN61000-6-1, KN11 Group 1 Class A				
Safety		IEC61010-1/EN6101	IEC61010-1/EN61010-1, UL 61010-1, CAN/CSA-C22.2 No. 61010-1				
Overvoltage categ	jory	II (for AC mains only	II (for AC mains only)				
Pollution degree		2	2				
Compliance and c	ertifications	CE, UKCA, cCSAus	CE, UKCA, cCSAus 4, RCM, ICES/NMB-001, KC				
Warm-up		40 minutes	40 minutes				

Relative Humidity, non-condensing.
 The maximum % Relative Humidity is up to 40°C and decreases linearly to 38% RH at 55 °C. From 40°C to 55°C, it follows the line of constant dew point.

The or constant dew point.
 The maximum % Relative Humidity is up to 40°C and decreases linearly to 48% RH at 50 °C. From 40°C to 50°C, it follows the line of constant dew point.
 Valid for PZ2100/10/20/21A.

Model	Dimensions	Weight	Slot
PZ2100A	Height 44.2 mm x depth 443.3 mm x width 446.8 mm	7.2 kg	4
PZ2110A	Height 40.1 mm x depth 210 mm x width 131 mm, 2-slot module	0.55 kg	2
PZ2120/21A	Height 20.1 mm x depth 210 mm x width 131 mm, 1-slot module	0.28 kg	1
PZ2130/31A	Height 20.1 mm x depth 210 mm x width 131 mm, 1-slot module	0.28 kg	1

	(8) (8) HHHHHH			44.2

Acoustical emissions ¹	Idle mode	Operating mode	Worst case mode
Sound pressure level ² (referenced to 20 µPa)	45 dBA	56 dBA	60 dBA
Sound power (referenced to 1 pW)	56 dBA	65 dBA	69 dBA

Supplemental characteristics. Fan speed is controlled automatically for reduced acoustic noise when the ambient 1. temperature and SMU load do not require full cooling capability.

2. At operator position.

Eront	nonal	operation
гюш	paner	operation

Front panel interface	LCD 256x64 dots with keypad
View mode	Meter view (Single-channel, 2-channel, 4-channel, Slot summary, Channel summary), Menu view
Hard keys	Meter, Channel, Help, Menu, Back, Erase, Channel On/Off, Voltage, Current, 10-key, Enter
Front panel LED	Single LED besides On/Off switch. Green or amber.

Source/measurement capabilities

		PZ2110A	PZ2120A	PZ2121A	PZ2130A	PZ2131A
Sweep measurement	Number of steps	1 to 1,000,000	1 to 2,000			
	Sweep mode	Linear, logarithmic	(log) or list			
	Sweep direction	Single or double				
	Туре	DC or pulse			DC	DC or pulse
	Min programmable value to create list sweep waveform	4 µs				
Digitizing/sampling measurement	Digitizer mode	Yes	Yes	Yes	N/A	Yes
	Max sampling rate	1.25 MSa/s	1 MSa/s	15 MSa/s	250 kSa/s	500 kSa/s
	Max buffer size	1,000,000 points	500,000 points 1, 2, 3		200,000 points	

Limited to 100,000 points when measuring with the rate at 15 MSa/s.
 Limited to 300,000 points when enabling Remote Transient Voltage Measurement function and setting Trigger Count to >1.
 Limited to 30,000 points when enabling Remote Transient Voltage Measurement function and measuring with the rate at 15 MSa/s.

PZ2100A Input/output connectivity

GPIB		Micro Dsub connector. IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology.		
Ethernet		LAN RJ-45 connector, supports 10Base-T, 100Base-T, and 1000Base-T		
USB		USB 2.0 Type-A Host Controller x1 USB 3.0 Type-C Device Interface x1		
Maximum voltage ratings		+16.5 VDC / -5 VDC between pins (pin 8 is internally connected to chassis ground.)		
Digital I/O ¹ Pins 1 - 7 as digital/trigge	Pins 1 and 2 as FLT output	Maximum low-level output voltage = 0.5 V @ 4 mA Maximum low-level sink current = 4 mA Typical high-level leakage current = 1 mA @ 16.5 VDC		
	Pins 1 - 7 as digital/trigger outputs	Maximum low-level output voltage = 0.5 V @ 4 mA; 1 V @ 50 mA; 1.75 V @ 100 mA Maximum low-level sink current = 100 mA Typical high-level leakage current = 0.8 mA @ 16.5 VDC		
	Pins 1-7 as digital/trigger inputs and pin 3 as INH input(pin 8 = common)	Maximum low-level input voltage = 0.8 V Minimum high-level input voltage = 2 V Typical low-level current = 2 mA @ 0 V (internal 2.2k pull-up) Typical high-level leakage current = 0.12 mA @ 16.5 VDC		
Ground		Chassis ground binding post		

1. Supplemental characteristics.

Program, software, and drivers

Programming	SCPI
Program memory	Program code. Up to 256 byte per execution. Sum of all program size in the program memory must be up to 100 KB. Maximum of 100 programs can be memorized.
LXI compliance	1.5 LXI Device Specification 2016
Software available	PathWave IV Curve, PathWave BenchVue Power Supply Control App
Standard-compliant drivers	IVI-C, IVI.NET, LabVIEW

Software prerequisites

PW9251A PathWave IV Curve	Operating system	Windows 10(64 bit), version 1809 or later Windows 11
	CPU	Intel Core i5 (or equivalent)
	RAM	8 GB
	Storage drive	900 MB free space for Windows
	Display resolution	1766 x 768 minimum
	Interfaces	USB, GPIB, LAN
	Operating system	Windows 10 64-bit, version 1809 or later Windows 11 64-bit, version 22H2 or later
BV0003B	CPU	Intel Core i5 (or equivalent)
PathWave BenchVue Power Supply App	RAM	8 GB
	Storage drive	900 MB free space for Windows
	Display resolution	1920 x 1080 minimum
	Interfaces	USB, GPIB, LAN

Furnished Accessories

Model number	Furnished accessories
PZ2100A	Power cable, Connector-terminal block (3.5mm 8-terminal), Filler panels (4 ea.), Slot blockers (2 ea.), Quick Reference
PZ2110A	Connector-terminal block (2.5mm 6-terminal), Short bar, Quick Reference
PZ2120A	Connector-terminal block (2.5mm 6-terminal), Short bar, Quick Reference
PZ2121A	Connector-terminal block (2.5mm 6-terminal), Short bar, Quick Reference
PZ2130A	Connector-terminal block (2.5mm 5-terminal), Short bar, Quick Reference
PZ2131A	Connector-terminal block (2.5mm 5-terminal), Short bar, Quick Reference

Ordering Information

Model number	Description
PZ2100A	Precision Source/Measure Unit Mainframe, 4 slots, 1U
PZ2110A	Precision Source/Measure Unit, 1.25 MSa/s, 10 fA, 210 V, 315 mA DC/pulse
PZ2120A	Precision Source/Measure Unit, 1 MSa/s, 100 fA, 60 V, 3.5 A DC/10.5 A pulse
PZ2121A	Precision Source/Measure Unit, 15 MSa/s, 100 fA, 60 V, 3.5 A DC/10.5 A pulse
PZ2130A	5ch Precision Source/Measure Unit, 100 pA, 30 V, 500 mA DC
PZ2131A	5ch Precision Source/Measure Unit, 500 kSa/s, 10 pA, 30 V, 500 mA DC/pulse

Option	Description
1A7	Calibration + uncertainties + guardbanding (not accredited)
A6J	ANSI Z540-1-1994 calibration
UK6	Commercial calibration certificate with test data

Model number	Description	
PX0101A-001	BNC to Ferrule Terminal Cable, 1.5m, VOLT:DC 3.3V	
PX0101A-002	BNC to Ferrule Terminal Cable, 3m, VOLT:DC 3.3V	
PX0102A-001	Low Noise Triaxial Cable, 1.5m	
PX0102A-002	Low Noise Triaxial Cable, 3m	
PX0103A-001	Triaxial to SMB Cable, 1.5m, VOLT:DC 210V	
PX0103A-002	Triaxial to SMB Cable, 3m, VOLT:DC 210V	
PX0104A-001	High Current Triaxial Cable, 4 A, 1.5m, VOLT:DC 60V	
PX0104A-002	High Current Triaxial Cable, 4 A, 3m, VOLT:DC 60V	
PX0105A-001	Low Inductance BNC Cable, 1.5m, VOLT:DC 60V	
PX0105A-002	Low Inductance BNC Cable, 3m, VOLT:DC 60V	
PX0106A	Dsub25 to 5 SMB Adapter	
PX0107A	Low Noise Filter Adapter	
PX0108A-001	BNC to SMB Cable, 1.5m, VOLT:DC 60V	
PX0108A-002	BNC to SMB Cable, 3m, VOLT:DC 60V	
PX0110A	Micro Dsub GPIB Cable Adapter For PZ2100A, 0.25m	
PX0111A	Slot Blocker For PZ2100A, Qty 2	
PX0112A	Filler Panel Kit For PZ2100A, Qty 4	
PX0113A	Rack Mount Kit For PZ2100A	
PX0114A	Micro Dsub GPIB Cable For PZ2100A, 1m	

Keysight enables innovators to push the boundaries of engineering by quickly solving design, emulation, and test challenges to create the best product experiences. Start your innovation journey at www.keysight.com.

This information is subject to change without notice. © Keysight Technologies, 2023, Published in USA, December 8, 2023, 3123-1174.EN